We are Updating Our Website to Better Serve Your Needs and Will Reopen 04/20/2025
We are Updating Our Website to Better Serve Your Needs and Will Reopen 04/20/2025
We will never ask you to simply believe what we say, but rather encourage you to verify for yourself! The scientific evidence continues to accumulate, demonstrating the efficacy of our chosen compounds and our industry leading approach to neurological enhancement and longevity.
[1] Y. Ding et al., “Plasma Glycine and Risk of Acute Myocardial Infarction in Patients With Suspected Stable Angina Pectoris,” J Am Heart Assoc, vol. 5, no. 1, p. e002621, Dec. 2015, doi: 10.1161/JAHA.115.002621.
[2] M. Cruz et al., “Glycine treatment decreases proinflammatory cytokines and
increases interferon-γ in patients with Type 2 diabetes,” J Endocrinol Invest, vol. 31, no. 8, pp. 694–699, Aug. 2008, doi: 0.1007/BF03346417.
[3] F. L. Xu, H. B. You, X. H. Li, X. F. Chen, Z. J. Liu, and J. P. Gong, “Glycine
attenuates endotoxin-induced liver injury by downregulating TLR4 signaling in Kupffer cells,” Am J Surg, vol. 196, no. 1, pp. 139–148, Jul. 2008, doi: 10.1016/j.amjsurg.2007.09.045.
[4] K. Ikejima, Y. Iimuro, D. T. Forman, and R. G. Thurman, “A diet containing glycine improves survival in endotoxin shock in the rat,” Am J Physiol, vol. 271, no. 1 Pt 1, pp. G97-103, Jul. 1996, doi: 10.1152/ajpgi.1996.271.1.G97.
[5] M. C. Gannon, J. A. Nuttall, and F. Q. Nuttall, “The metabolic response to ingested glycine,” Am J Clin Nutr, vol. 76, no. 6, pp. 1302–1307, Dec. 2002, doi: 10.1093/ajcn/76.6.1302.
[6] S. File, E. Fluck, and C. Fernandes, “Beneficial Effects of Glycine (Bioglycin) on
Memory and Attention in Young and Middle-Aged Adults,” Journal of clinical
psychopharmacology, vol. 19, pp. 506–12, Jan. 2000, doi: 10.1097/00004714-
199912000-00004.
[7] M. Bannai, N. Kawai, K. Ono, K. Nakahara, and N. Murakami, “The effects of
glycine on subjective daytime performance in partially sleep-restricted healthy
volunteers,” Front Neurol, vol. 3, p. 61, 2012, doi: 10.3389/fneur.2012.00061.
[8] K. Inagawa, T. Hiraoka, T. Kohda, W. Yamadera, and M. Takahashi, “Subjective
effects of glycine ingestion before bedtime on sleep quality,” Sleep and
Biological Rhythms, vol. 4, no. 1, pp. 75–77, 2006, doi: 10.1111/j.1479-
8425.2006.00193.x.
[9] W. Yamadera, K. Inagawa, S. Chiba, M. Bannai, M. Takahashi, and K. Nakayama, “Glycine ingestion improves subjective sleep quality in human volunteers, orrelating with polysomnographic Changes,” Sleep and Biological Rhythms, vol. 5, no. 2, pp. 126–131, 2007, doi: 10.1111/j.1479-8425.2007.00262.x.
[10] R. Koopman, M. K. Caldow, D. J. Ham, and G. S. Lynch, “Glycine metabolism
in skeletal muscle: implications for Metabolic homeostasis,” Current Opinion in
Clinical Nutrition & Metabolic Care, vol. 20, no. 4, pp. 237–242, Jul. 2017, doi: 10.1097/MCO.0000000000000383.
[11] R. V. Sekhar et al., “Deficient synthesis of glutathione underlies oxidative stress in aging and can be corrected by dietary cysteine and glycine supplementation,” Am J Clin Nutr, vol. 94, no. 3, pp. 847–853, Sep. 2011, doi: 10.3945/ajcn.110.003483.
[12] P. de Paz-Lugo, J. A. Lupiáñez, and E. Meléndez-Hevia, “High glycine concentration increases collagen synthesis by articular chondrocytes in vitro: acute glycine deficiency could be an important cause of osteoarthritis,” Amino Acids, vol. 50, no. 10, pp. 1357–1365, 2018, doi: 10.1007/s00726-018-2611-x.
[13] University of Tsukuba, “Scientists reverse aging in human cell lines and give
theory of aging a new lease of life,” scienceDaily, May 26, 2015.
[14] O. Hashizume et al., “Epigenetic regulation of the nuclear-coded GCAT and
SHMT2 genes confers human age-Associated mitochondrial respiration defects,” Sci Rep, vol. 5, no. 1, pp. 1–11, May 2015, doi: 10.1038/srep10434.
[15] J. Brind et al., “Dietary glycine supplementation mimics lifespan extension
by dietary methionine restriction in Fisher 344 rats,” The FASEB Journal, vol. 25, no. S1, p. 528.2-528.2, 2011, doi: 10.1096/fasebj.25.1_supplement.528.2.
[16] R. A. Miller et al., “Glycine Supplementation extends lifespan of male and female mice,” Aging Cell, vol. 18, no. 3, p. e12953, Jun. 2019, doi: 10.1111/acel.12953.
[17] F. Obata and M. Miura, “Enhancing S-adenosyl-methionine catabolism extends Drosophila lifespan,” Nat Commun, vol. 6, no. 1, p. 8332, Sep. 2015, doi: 10.1038/ncomms9332.
[18] T. Shintani, Y. Kosuge, and H. Ashida, “Glucosamine Extends the Lifespan of
‘Caenorhabditis elegans’ via Autophagy Induction,” Journal of Applied Glycoscience, vol. 65, no. 3, pp. 37–43, 2018, doi: 10.5458/jag.jag.JAG-2018_002.
[19] A. Ruiz-Ramírez, E. Ortiz-Balderas, G. Cardozo-Saldaña, E. Diaz-Diaz, and M.
El-Hafidi, “Glycine restores glutathione and protects against oxidative stress in vascular tissue from sucrose-fed rats,” Clin Sci, vol. 126, no. 1, pp. 19–29, Jan.
2014, doi: 10.1042/CS20130164.
[20] F. Bahmani, S. Z. Bathaie, S. J. Aldavood, and A. Ghahghaei, “Glycine therapy inhibits the progression of cataract in streptozotocin-induced diabetic rats,” Mol Vis, vol. 18, pp. 439–448, 2012.
[21] S. Ramakrishnan and K. N. Sulochana, “Decrease in glycation of lens
proteins by lysine and glycine by scavenging of glucose and possible mitigation of cataractogenesis,” Exp Eye Res, vol. 57, no. 5, pp. 623–628, Nov. 1993, doi: 10.1006/exer.1993.1167.
[22] G. A. BELL, E. D. KANTOR, J. W. LAMPE, D. D. SHEN, AND E. WHITE, “USE OF GLUCOSAMINE AND CHONDROITIN IN RELATION TO MORTALITY,” EUR J EPIDEMIOL, VOL. 27, NO. 8, PP. 593–603, AUG. 2012, DOI: 10.1007/S10654-012-9714-6.
[23] G. POCOBELLI ET AL., “TOTAL MORTALITY RISK IN RELATION TO USE OF LESS-COMMON DIETARY SUPPLEMENTS,” CLIN NUTR, VOL. 91, NO. 6, PP. 1791–1800, JUN. 2010, DOI: 10.3945/AJCN.2009.28639.
[24] H. MA ET AL., “ASSOCIATION OF HABITUAL GLUCOSAMINE USE WITH RISK OF CARDIOVASCULAR DISEASE: PROSPECTIVE STUDY IN UK BIOBANK,” BMJ, VOL. 365, P. L1628, MAY 2019, DOI: 10.1136/BMJ.L1628.
[25] E. D. KANTOR, J. W. LAMPE, T. L. VAUGHAN, U. PETERS, C. D. REHM, AND E. WHITE, “ASSOCIATION BETWEEN USE OF SPECIALTY DIETARY SUPPLEMENTS AND C-REACTIVE PROTEIN CONCENTRATIONS,” AMERICAN JOURNAL OF EPIDEMIOLOGY, VOL. 176, NO. 11, PP. 1002–1013, DEC. 2012, DOI: 10.1093/AJE/KWS186.
[26] S. WEIMER ET AL., “D-GLUCOSAMINE SUPPLEMENTATION EXTENDS LIFE SPAN OF NEMATODES AND OF AGEING MICE,” NAT COMMUN, VOL. 5, NO. 1, P. 3563, APR. 2014, DOI: 10.1038/NCOMMS4563.
[27] K. JAMIALAHMADI, F. SOLTANI, M. NABAVI FARD, J. BEHRAVAN, AND F.
MOSAFFA, “ASSESSMENT OF PROTECTIVE EFFECTS OF GLUCOSAMINE AND NACETYL
GLUCOSAMINE AGAINST DNA DAMAGE INDUCED BY HYDROGEN PEROXIDE IN HUMAN LYMPHOCYTES,” DRUG CHEM TOXICOL, VOL. 37, NO. 4, PP. 427–432, OCT. 2014, DOI: 10.3109/01480545.2013.878951.
[28] C. FANG, M. PENG, G. LI, J. TIAN, AND D. YIN, “NEW FUNCTIONS OF
GLUCOSAMINE AS A SCAVENGER OF THE LIPID PEROXIDATION PRODUCT
MALONDIALDEHYDE,” CHEM RES TOXICOL, VOL. 20, NO. 6, PP. 947–953, JUN. 2007, DOI: 10.1021/TX700059B.
[29] Y.-J. CHEN ET AL., “PROTECTIVE EFFECTS OF GLUCOSAMINE ON
OXIDATIVE-STRESS AND ISCHEMIA/REPERFUSION-INDUCED RETINAL INJURY,” INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, VOL. 56, NO. 3, PP. 1506–1516, MAR. 2015, DOI: 10.1167/IOVS.14-15726.
[30] C. VALVASON, E. MUSACCHIO, A. POZZUOLI, R. RAMONDA, R. ALDEGHERI, AND L. PUNZI, “INFLUENCE OF GLUCOSAMINE SULPHATE ON OXIDATIVE STRESS IN HUMAN OSTEOARTHRITIC CHONDROCYTES: EFFECTS ON HO-1,
P22(PHOX) AND INOS EXPRESSION,” RHEUMATOLOGY (OXFORD), VOL. 47, NO.
1, PP. 31–35, JAN. 2008, DOI: 10.1093/RHEUMATOLOGY/KEM289.
[31] T. SHINTANI ET AL., “GLUCOSAMINE INDUCES AUTOPHAGY VIA AN MTOR INDEPENDENT PATHWAY,” BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, VOL. 391, NO. 4, PP. 1775–1779, JAN. 2010, DOI: 10.1016/J.BBRC.2009.12.154.
[32] D. L. BISSETT, “GLUCOSAMINE: AN INGREDIENT WITH SKIN AND OTHER
BENEFITS,” J COSMET DERMATOL, VOL. 5, NO. 4, PP. 309–315, DEC. 2006, DOI: 10.1111/J.1473-2165.2006.00277.X.
[33] A. GUENICHE AND I. CASTIEL-HIGOUNENC, “EFFICACY OF GLUCOSAMINE SULPHATE IN SKIN AGEING: RESULTS FROM AN EX VIVO ANTI-AGEING MODEL AND A CLINICAL TRIAL,” SPP, VOL. 30, NO. 1, PP. 36–41, 2017, DOI: 10.1159/000450832.
[34] A. FARSAD-NAEIMI, M. ALIZADEH, A. ESFAHANI, AND E. D. AMINABAD,
“EFFECT OF FISETIN SUPPLEMENTATION ON INFLAMMATORY FACTORS AND
MATRIX METALLOPROTEINASE ENZYMES IN COLORECTAL CANCER PATIENTS,” FOOD FUNCT., VOL. 9, NO. 4, PP. 2025–2031, APR. 2018, DOI:
10.1039/C7FO01898C.
[35] M. J. YOUSEFZADEH ET AL., “FISETIN IS A SENOTHERAPEUTIC THAT EXTENDS HEALTH AND LIFESPAN,” EBIOMEDICINE, VOL. 36, PP. 18–28, OCT. 2018, DOI: 10.1016/J.EBIOM.2018.09.015.
[36] A. CURRAIS ET AL., “FISETIN REDUCES THE IMPACT OF AGING ON
BEHAVIOR AND PHYSIOLOGY IN THE RAPIDLY AGING SAMP8 MOUSE,” J
GERONTOL A BIOL SCI MED SCI, VOL. 73, NO. 3, PP. 299–307, MAR. 2018, DOI:
10.1093/GERONA/GLX104.
[37] D. N. SYED, V. M. ADHAMI, M. I. KHAN, AND H. MUKHTAR, “INHIBITION OF AKT/MTOR SIGNALING BY THE DIETARY FLAVONOID FISETIN,” ANTICANCER AGENTS MED CHEM, VOL. 13, NO. 7, PP. 995–1001, SEP. 2013.
Brain Sciences 15, no. 2 (2025): 117.
[38] N. Khan, D. N. Syed, N. Ahmad, and H. Mukhtar, “Fisetin: A Dietary
Antioxidant for Health Promotion,” Antioxid Redox Signal, vol. 19, no. 2, pp. 151–
162, Jul. 2013, doi: 10.1089/ars.2012.4901.
[39] S. Kwak, S.-K. Ku, and J.-S. Bae, “Fisetin inhibits high-glucose-induced
vascular inflammation in vitro and in vivo,” Inflamm. Res., vol. 63, no. 9, pp. 779–
787, Sep. 2014, doi: 10.1007/s00011-014-0750-4.
[40] C. D. Sadik, H. Sies, and T. Schewe, “Inhibition of 15-lipoxygenases by
flavonoids: structure-activity relations and mode of action,” Biochem Pharmacol,
vol. 65, no. 5, pp. 773–781, Mar. 2003, doi: 10.1016/s0006-2952(02)01621-0.
[41] B. D. Sahu et al., “Ameliorative Effect of Fisetin on Cisplatin-Induced
Nephrotoxicity in Rats via Modulation of NF-κB Activation and Antioxidant
Defence,” PLOS ONE, vol. 9, no. 9, p. e105070, Sep. 2014, doi:
10.1371/journal.pone.0105070.
[42] W. Lu, J. Zhu, S. Zou, X. Li, and J. Huang, “The efficient expression of human
fibroblast collagenase in Escherichia coli and the discovery of flavonoid inhibitors,” J Enzyme Inhib Med Chem, vol. 28, no. 4, pp. 741–746, Aug. 2013, doi: 10.3109/14756366.2012.681650.
[43] J. H. Park et al., “Fisetin inhibits matrix metalloproteinases and reduces tumor cell invasiveness and endothelial cell tube formation,” Nutr Cancer, vol. 65, no. 8, pp. 1192–1199, 2013, doi:10.1080/01635581.2013.828090.
[44] W.-B. He, K. Abe, and T. Akaishi, “Oral administration of fisetin promotes the
induction of hippocampal long-term potentiation in vivo,” J Pharmacol Sci, vol.
136, no. 1, pp. 42–45, Jan. 2018, doi: 10.1016/j.jphs.2017.12.008.
[45] P. Maher, “Fisetin Acts on Multiple Pathways to Reduce the Impact of Age
and Disease on CNS Function,” Front Biosci, vol. 7, pp. 58–82, Jun. 2015.
[46] P. Maher, “Preventing and Treating Neurological Disorders with the Flavonol
Fisetin,” Brain Plasticity, vol. 6, no. 2, pp. 155–166, Jan. 2020, doi: 10.3233/
BPL-200104.
[47] P. Maher, T. Akaishi, and K. Abe, “Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhances memory,” Proc Natl Acad Sci USA, vol. 103, no. 44, pp. 16568–16573, Oct. 2006, doi: 10.1073/pnas.0607822103.
[48] Gelderman KA, Tomlinson S, Ross GD, Gorter A. Complement function in mAb-mediated cancer immunotherapy. Trends in Immunology 2004;25:158-64.
[49] Andrea T. Borchers, Judith S. Stern, Robert M. Hackman, Carl L. Keen, M.
Eric Gershwin "Mushrooms, Tumors, and Immunity" November 2003 doi:
10.1046/j.1525-1373.1999.d01-86.x
[50] Marina Soković, Ana Ćirić, Jasmina Glamočlija, Dejan Stojković "The Bioactive Proprties of Medicial Mushrooms" 25 November 2016 doi:doi.org/10.1002/9781118944653.ch4
[51] Das, Arun K., et al. "Edible mushrooms as functional ingredients for development of healthier and more sustainable muscle foods: A flexitarian approach." Molecules 26.9 (2021): 2463.
[52] Smith, J.E., Rowan, N.J. and Tan, K.K., 2000. Functional food science and
the medicinal mushrooms. International Journal of Medicinal Mushrooms, 2(4).
[53] Calculator, Nano Powder, and Dry Powder Solutions. "Adaptogenic Mushrooms: Your Natural Stress Busters–How They Work and Why You Need
Them."
[54] Isokauppila, Tero, and Danielle Ryan Broida. Healing Adaptogens: The Definitive Guide to Using Super Herbs and Mushrooms for Your Body's Restoration, Defense, and Performance. Hay House, Inc, 2024.
[55] Wong, Kah-Hui, et al. "Neuroregenerative potential of lion's mane
mushroom, Hericium erinaceus (Bull.: Fr.) Pers.(higher Basidiomycetes), in the
treatment of peripheral nerve injury." International journal of medicinal mushrooms 14.5 (2012).
[56] Ghosh S, Nandi S, Banerjee A, Sarkar S, Chakraborty N, Acharya K.
Prospecting medicinal properties of Lion's mane mushroom. Journal of food
biochemistry. 2021 Aug;45(8):e13833.
[57] Moldavan, M., Grygansky, A. P., Kolotushkina, O. V., Kirchhoff, B., Skibo, G.
G., & Pedarzani, P. (2007). Neurotropic and trophic action of lion's mane mushroom Hericium erinaceus (Bull.: Fr.) Pers.(Aphyllophoromycetideae) extracts on nerve cells in vitro. International Journal of Medicinal Mushrooms,9(1).
[58] Chen, Lin, et al. "Multi-omics strategy reveals that Cordyceps sinensis
ameliorates sepsis-associated acute kidney injury via reprogramming of
mitochondrial energy metabolism and macrophage polarization." Acta Materia
Medica 3.3 (2024): 269-288.
[59] Liu, Xia, et al. "Cordyceps sinensis protects against liver and heart injuries in
a rat model of chronic kidney disease: a metabolomic analysis." Acta Pharmacologica Sinica 35.5 (2014): 697-706.
[60] Chen, M., Cheung, F.W., Chan, M.H., Hui, P.K., Ip, S.P., Ling, Y.H., Che, C.T. and Liu, W.K., 2012. Protective roles of Cordyceps on lung fibrosis in cellular
and rat models. Journal of ethnopharmacology, 143(2), pp.448-454.
[61] Ajibola, O.O., Nolasco-Hipolito, C., Carvajal-Zarrabal, O., Salleh, S.F.,
Adeyinka, G.C., Adefegha, S.A., Ahmmed, M.K., Sumaiya, K. and Thomas, R.,
2024. Turkey tail mushroom (Trametes versicolor): An edible macrofungi with
immense medicinal properties. Current Opinion in Food Science, 58, p.101191.
[62] Kıvrak, I., Kivrak, S. and Karababa, E., 2020. Assessment of bioactive compounds and antioxidant activity of Turkey tail medicinal mushroom Trametes versicolor (Agaricomycetes). International journal of medicinal mushrooms, 22(6).
[63] Benson, Kathleen F., et al. "The mycelium of the Trametes versicolor (Turkey tail) mushroom and its fermented substrate each show potent and complementary immune activating properties in vitro." BMC complementary and alternative medicine 19.1 (2019): 1-14.
[64] Cai, Xinzhong, et al. "Hepatoma cell growth inhibition by inducing apoptosis
with polysaccharide isolated from Turkey tail medicinal mushroom, Trametes versicolor (L.: Fr.) Lloyd (Aphyllophoromycetideae)." International Journal of Medicinal Mushrooms 12.3 (2010).
[65] Abascal K, Yarnell E. A turkey tails polysaccharide as an immunochemotherapy agent in cancer. Alternative & Complementary Therapies.
2007 Aug 1;13(4):178-82.
[66] Camilleri, Emma, et al. "A comprehensive review on the health benefits, phytochemicals, and enzymatic constituents for potential therapeutic and industrial applications of Turkey tail mushrooms." Discover Applied Sciences 6.5 (2024):257.
[67] Mizuno, T., Wang, G., Zhang, J., Kawagishi, H., Nishitoba, T. and Li, J.,
1995. Reishi, Ganoderma lucidum and Ganoderma tsugae: bioactive substances
and medicinal effects. Food Reviews International, 11(1), pp.151-166.
[68] Fordjour, Eric, et al. "Chaga mushroom: a super-fungus with countless facets
and untapped potential." Frontiers in pharmacology 14 (2023): 1273786.
[69] Luo, J., Ganesan, K. and Xu, B., 2024. Unlocking the power: New insights
into the anti-aging properties of mushrooms. Journal of Fungi, 10(3), p.215.
[70] Krittanawong, Chayakrit, et al. "Mushroom consumption and cardiovascular health: a systematic review." The American journal of medicine 134.5 (2021): 637-642.
[71] Roda, Elisa, et al. "Neuroprotective metabolites of Hericium erinaceus
promote neuro-healthy aging." International journal of molecular sciences 22.12
(2021): 6379.
[72] D’Amico, R., Trovato Salinaro, A., Fusco, R., Cordaro, M., Impellizzeri, D.,
Scuto, M., ... & Calabrese, V. (2021). Hericium erinaceus and Coriolus versicolor
modulate molecular and biochemical changes after traumatic brain injury.
Antioxidants, 10(6), 898.
[73] Lima da Cruz, Rafael V., Richardson N. Leão, and Thiago C. Moulin.
"Neurogenesis and broader neuroplasticity: a systematic review." Molecular
Medicine 30.1 (2024): 244.
[74] Song, J., Kambari, Y., Amaev, A., Ueno, F., Carmona, E.T., De Luca, V.,
Pollock, B., Flint, A., Husain, M.I., Graff-Guerrero, A. and Gerretsen, P., 2023.
Promote synaptogenesis in the brains of patients with mild cognitive impairment.
Medical Hypotheses, 175, p.111068.
[75] Weiss, Francesco, Anna Magnesa, Matteo Gambini, Riccardo Gurrieri, Eric
Annuzzi, Camilla Elefante, Giulio Perugi, and Donatella Marazziti. "Induced Neural
Plasticity: A Comprehensive Review and a Discussion of Clinical Implications."
Brain Sciences 15, no. 2 (2025): 117.
inhibiting ATP synthase and TOR,” Nature, vol. 510, no. 7505, pp. 397–401, Jun.
2014, doi: 10.1038/nature13264.
[77] M. M. Bayliak, M. P. Lylyk, and O. M. Sorochynska, “Dietary alphaketoglutarate
partially prevents age-related decline in locomotor activity and cold tolerance in Drosophila melanogaster,” Biologia, vol. 72, no. 4, pp. 458–467, Apr.2017, doi: 10.1515/biolog-2017-0042.
[78] M. P. Lylyk, M. M. Bayliak, H. V. Shmihel, J. M. Storey, K. B. Storey, and V. I. Lushchak, “Effects of alpha-ketoglutarate on lifespan and functional aging of
Drosophila melanogaster flies,” Biochem.J, vol. 90, no. 6, pp. 49–61, Nov. 2018, doi: 10.15407/ubj90.06.049.
[79] Y. Su et al., “Alpha-ketoglutarate extends Drosophila lifespan by inhibiting
mTOR and activating AMPK,” Aging, vol. 11, no. 12, pp. 4183–4197, Jun. 2019,
doi: 10.18632/aging.102045.
[80] B. I. Blomqvist, F. Hammarqvist, A. von der Decken, and J. Wernerman,
“Glutamine and alpha-ketoglutarate prevent the decrease in muscle free
glutamine concentration and influence protein synthesis after total hip
replacement,” Metabolism, vol. 44, no. 9, pp. 1215–1222, Sep. 1995, doi:
10.1016/0026-0495(95)90019-5.
[81] F. Hammarqvist, J. Wernerman, A. von der Decken, and E. Vinnars, “Alphaketoglutarate preserves protein synthesis and free glutamine in skeletal muscle after surgery,” Surgery, vol. 109, no. 1, pp. 28–36, Jan. 1991.
[82] A. Jeppsson et al., “Renal effects of alpha-ketoglutarate early after coronary
operations,” Ann Thorac Surg, vol. 65, no. 3, pp. 684–690, Mar. 1998, doi:
10.1016/s0003-4975(97)01337-4.
[83] U. Kjellman et al., “α-ketoglutarate for myocardial protection in heart surgery,” The Lancet, vol. 345, no. 8949, pp. 552–553, Mar. 1995, doi:
10.1016/S0140-6736(95)90466-2.
[84] J. Wernerman, F. Hammarqvist, and E. Vinnars, “Alpha-ketoglutarate and
postoperative muscle catabolism,” Lancet, vol. 335, no. 8691, pp. 701–703, Mar.
1990, doi: 10.1016/0140-6736(90)90811-i.
[85] R. S. Filip, S. G. Pierzynowski, B. Lindegard, J. Wernerman, A. Haratym-Maj,
and M. Podgurniak, “Alpha-ketoglutarate decreases serum levels of C-terminal
cross-linking telopeptide of type I collagen (CTX) in postmenopausal women with
osteopenia: six-month study,” Int J Vitam Nutr Res, vol. 77, no. 2, pp. 89–97, Mar.
2007, doi: 10.1024/0300-9831.77.2.89.
[86] A. Tocaj, R. Filip, and B. Lindergard, “Alfa ketoglutarate (AKG) inhibit
osteoporoses development in postmenopausal women,” J Bone Miner Res, vol. 18, p. 267, Jan. 2003.
[87] B. W. Carey, L. W. S. Finley, J. R. Cross, C. D. Allis, and C. B. Thompson,
“Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells,”
Nature, vol. 518, no. 7539, pp. 413–416, Feb. 2015, doi:10.1038/nature13981.
[88] Svendsen, Kristofer, Keith A. Sharkey, and Christophe Altier. "Nonintoxicating
cannabinoids in visceral pain." Cannabis and Cannabinoid Research 9.1 (2024): 3-11.
[89] F. E. Pehlivan, “Vitamin C: An Epigenetic Regulator,” in Vitamin C: an Update on Current Uses and Functions, J. G. LeBlanc, Ed. IntechOpen, 2018. doi:
10.5772/intechopen.82563.
[90] B. Burja et al., “The Metabolic Intermediate Alpha-Ketoglutarate Suppresses the TGFβ-driven Profibrotic Responses of Dermal Fibroblasts [abstract],” Arthritis Rheumatol., vol. 71, no. (suppl 10), Nov. 2019, Accessed: Oct. 29,
[91] E. D. Son, G. H. Choi, H. Kim, B. Lee, I. S. Chang, and J. S. Hwang, “Alphaketoglutarate stimulates procollagen production in cultured human dermal
fibroblasts, and decreases UVB-induced wrinkle formation following topical
application on the dorsal skin of hairless mice,” Biol Pharm Bull, vol. 30, no. 8, pp.
1395–1399, Aug. 2007, doi: 10.1248/bpb.30.1395.
[92] J. A. Baur et al., “Resveratrol improves health and survival of mice on a highcalorie
diet,” Nature, vol. 444, no. 7117, pp. 337–342, Nov. 2006, doi: 10.1038/nature05354.
[93] K. T. Howitz et al., “Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan,” Nature, vol. 425, no. 6954, pp. 191–196,
Sep. 2003, doi: 10.1038/nature01960.
[94] T. Liu et al., “Resveratrol Attenuates Oxidative Stress and Extends Life Span
in the Annual Fish Nothobranchius guentheri,” Rejuvenation Research, vol. 18, no.3, pp. 225–233, Jun. 2015, doi: 10.1089/rej.2014.1618.
[95] B. Rascón, B. P. Hubbard, D. A. Sinclair, and G. V. Amdam, “The lifespan
extension effects of resveratrol are conserved in the honey bee and may be
driven by a mechanism related to caloric restriction,” Aging, vol. 4, no. 7, pp. 499–
508, Jul. 2012.
[97] D. McCormack and D. McFadden, “A Review of Pterostilbene Antioxidant
Activity and Disease Modification,” Oxidative Medicine and Cellular Longevity, vol.2013, Apr. 2013, doi: 10.1155/2013/575482.
[98] J. Chang et al., “Low-dose pterostilbene, but not resveratrol, is a potent neuromodulator in aging and Alzheimer’s disease,” Neurobiology of Aging, vol. 33, no. 9, pp. 2062–2071, Sep. 2012, doi: 10.1016/j.neurobiolaging.2011.08.015.
[99] S. Gómez-Zorita et al., “Comparative Effects of Pterostilbene and Its Parent
Compound Resveratrol on Oxidative Stress and Inflammation in Steatohepatitis
Induced by High-Fat High-Fructose Feeding,” Antioxidants, vol. 9, no. 11, p. E1042, Oct. 2020, doi: 10.3390/antiox9111042.
[100] J. Liu et al., “Pterostilbene exerts an anti-inflammatory effect via regulating
endoplasmic reticulum stress in endothelial cells,” Cytokine, vol. 77, pp. 88–97, Jan. 2016, doi: 10.1016/j.cyto.2015.11.006.
[101] R.-J. Chen et al., “Autophagy-inducing effect of pterostilbene: A prospective therapeutic/preventive option for skin diseases,” Journal of Food and Drug Analysis, vol. 25, no. 1, pp. 125–133, Jan. 2017, doi: 10.1016/j.jfda.2016.10.022.
[102] D. Wang, H. Guo, H. Yang, D. Wang, P. Gao, and W. Wei, “Pterostilbene, An
Active Constituent of Blueberries, Suppresses Proliferation Potential of Human Cholangiocarcinoma via Enhancing the Autophagic Flux,” Frontiers in
Pharmacology, vol. 10, p. 1238, 2019, doi: 10.3389/fphar.2019.01238.
[103] L. Zhang, L. Cui, G. Zhou, H. Jing, Y. Guo, and W. Sun, “Pterostilbene, a
natural small-molecular compound, promotes cytoprotective macroautophagy in vascular endothelial cells,” J Nutr Biochem, vol. 24, no. 5, pp. 903–911, May 2013, doi: 10.1016/j.jnutbio.2012.06.008.
[104] J. Li et al., “Blueberry Component Pterostilbene Protects Corneal Epithelial
Cells from Inflammation via Anti-oxidative Pathway,” Sci Rep, vol. 6, p. 19408, Jan.
2016, doi: 10.1038/srep19408.
[105] P. Peñalver, S. Zodio, R. Lucas, M. V. de-Paz, and J. C. Morales,“Neuroprotective and Anti-inflammatory Effects of Pterostilbene Metabolites in Human Neuroblastoma SH-SY5Y and RAW 264.7 Macrophage Cells,” J. Agric.Food Chem., vol. 68, no. 6, pp. 1609–1620, Feb. 2020, doi:10.1021/acs.jafc.9b07147.
[106] T. Yashiro, S. Yura, A. Tobita, Y. Toyoda, K. Kasakura, and C. Nishiyama,
“Pterostilbene reduces colonic inflammation by suppressing dendritic cell
activation and promoting regulatory T cell development,” The FASEB Journal, vol.
34, no. 11, pp. 14810–14819, 2020, doi: 10.1096/fj.202001502R.
[107] Y. Cheng et al., “SIRT1 activation by pterostilbene attenuates the skeletal
muscle oxidative stress injury and mitochondrial dysfunction induced by ischemia reperfusion injury,” Apoptosis, vol. 21, no. 8, pp. 905–916, Aug. 2016, doi:
10.1007/s10495-016-1258-x.
[108] Y.-R. Li, S. Li, and C.-C. Lin, “Effect of resveratrol and pterostilbene on aging
and longevity,” Biofactors, vol. 44, no. 1, pp. 69–82, Jan. 2018, doi:10.1002/biof.1400.
[109] K. Yaku, K. Okabe, and T. Nakagawa, “NAD metabolism: Implications in aging and longevity,” Ageing Res Rev, vol. 47, pp. 1–17, Nov. 2018, doi:10.1016/j.arr.2018.05.006.
[110] Y. Yuan, V. F. Cruzat, P. Newsholme, J. Cheng, Y. Chen, and Y. Lu,
“Regulation of SIRT1 in aging: Roles in mitochondrial function and biogenesis,”
Mech Ageing Dev, vol. 155, pp. 10–21, Apr. 2016, doi: 10.1016/j.mad.2016.02.003.
[111] V. Darbinyan, A. Kteyan, A. Panossian, E. Gabrielian, G. Wikman, and H. Wagner, “Rhodiola rosea in stress induced fatigue--a double blind cross-over study of a standardized extract SHR-5 with a repeated low-dose regimen on the mental performance of healthy physicians during night duty,” Phytomedicine, vol. 7, no. 5, pp. 365–371, Oct. 2000, doi: 10.1016/S0944-7113(00)80055-0.
[112] S. K. Hung, R. Perry, and E. Ernst, “The effectiveness and efficacy of Rhodiola
rosea L.: a systematic review of randomized clinical trials,” Phytomedicine, vol. 18, no. 4, pp. 235–244, Feb. 2011, doi: 10.1016/j.phymed.2010.08.014.
[113] Y. Lekomtseva, I. Zhukova, and A. Wacker, “Rhodiola rosea in Subjects with
Prolonged or Chronic Fatigue Symptoms: Results of an Open-Label Clinical Trial,”
CMR, vol. 24, no. 1, pp. 46–52, 2017, doi: 10.1159/000457918.
[114] A. Parisi et al., “Effects of chronic Rhodiola Rosea supplementation on sport
performance and antioxidant capacity in trained male: preliminary results,” J
Sports Med Phys Fitness, vol. 50, no. 1, pp. 57–63, Mar. 2010.
[115] M. Jafari et al., “Rhodiola: a promising anti-aging Chinese herb,” Rejuvenation Res, vol. 10, no. 4, pp. 587–602, Dec. 2007, doi:10.1089/rej.2007.0560.
[116] S. Schriner, V. Coskun, S. Hogan, C. Nguyen, T. Lopez, and M. Jafari,
“Extension of Drosophila Lifespan by Rhodiola rosea Depends on Dietary
Carbohydrate and Caloric Content in a Simplified Diet,” Journal of medicinal food,
vol. 19, pp. 318–323, Mar. 2016, doi: 10.1089/jmf.2015.0105.
[117] S. E. Schriner et al., “Decreased mitochondrial superoxide levels and
enhanced protection against paraquat in Drosophila melanogaster supplemented
with Rhodiola rosea,” Free Radic Res, vol. 43, no. 9, pp. 836–843, Sep. 2009, doi:
10.1080/10715760903089724.
[118] Mechanism Independent from Dietary Restriction,” PLOS ONE, vol. 8,
no. 5, p. e63886, May 2013, doi: 10.1371/journal.pone.0063886.
[119] M. M. Bayliak and V. I. Lushchak, “The golden root, Rhodiola rosea,
prolongs lifespan but decreases oxidative stress resistance in yeast Saccharomyces cerevisiae,” Phytomedicine, vol. 18, no. 14, pp. 1262–1268, Nov. 2011, doi: 10.1016/j.phymed.2011.06.010.
[120] F. a. C. Wiegant, S. Surinova, E. Ytsma, M. Langelaar-Makkinje, G. Wikman, and J. A. Post, “Plant adaptogens increase lifespan and stress resistance in C. elegans,” Biogerontology, vol. 10, no. 1, pp. 27–42, Feb. 2009, doi:10.1007/s10522-008-9151-9.
[121] S. E. Schriner, A. Avanesian, Y. Liu, H. Luesch, and M. Jafari, “Protection of
human cultured cells against oxidative stress by Rhodiola rosea without
activation of antioxidant defenses,” Free Radic Biol Med, vol. 47, no. 5, pp. 577–
584, Sep. 2009, doi: 10.1016/j.freeradbiomed.2009.05.025.
[122] J. Ni, Y. Li, W. Li, and R. Guo, “Salidroside protects against foam cell
formation and apoptosis, possibly via the MAPK and AKT signaling pathways,”
Lipids Health Dis, vol. 16, no. 1, p. 198, Oct. 2017, doi: 10.1186/s12944-017-
0582-7.
[123] S.-S. Xing et al., “Salidroside attenuates endothelial cellular senescence via decreasing the expression of inflammatory cytokines and increasing the
expression of SIRT3,” Mech Ageing Dev, vol. 175, pp. 1–6, Oct. 2018, doi:
10.1016/j.mad.2017.12.005.
[124] D. Zhao et al., “Salidroside attenuates oxidized low‑density
lipoprotein‑induced endothelial cell injury via promotion of the AMPK/SIRT1
pathway,” International Journal of Molecular Medicine, vol. 43, no. 6, pp. 2279–2290, Jun. 2019, doi: 10.3892/ijmm.2019.4153.
[125] G. Ma et al., “Rhodiola rosea L. Improves Learning and Memory Function:
Preclinical Evidence and Possible Mechanisms,” Front Pharmacol, vol. 9, p. 1415, Dec. 2018, doi: 10.3389/fphar.2018.01415.
[126] K. J. Abraham et al., “Intersection of calorie restriction and magnesium in the suppression of genome-destabilizing RNA-DNA hybrids,” Nucleic Acids Res, vol. 44, no. 18, pp. 8870–8884, Oct. 2016, doi: 10.1093/nar/gkw752.
[127] A. E. Every and I. M. Russu, “Influence of Magnesium Ions on Spontaneous Opening of DNA Base Pairs,” J Phys Chem B, vol. 112, no. 25, pp. 7689–7695, Jun. 2008, doi: 10.1021/jp8005876.
[128] A. Hartwig, “Role of magnesium in genomic stability,” Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol. 475, no. 1, pp. 113–121, Apr. 2001, doi: 10.1016/S0027-5107(01)00074-4.
[129] J. Petrović et al., “Magnesium Supplementation Diminishes Peripheral
Blood Lymphocyte DNA Oxidative Damage in Athletes and Sedentary Young Man,” Oxidative Medicine and Cellular Longevity, vol. 2016, p. e2019643, Mar. 2016, doi: 10.1155/2016/2019643.
[130] F. H. Nielsen, “Magnesium deficiency and increased inflammation: current
perspectives,” J Inflamm Res, vol. 11, pp. 25–34, Jan. 2018, doi:10.2147/JIR.S136742.
[131] M. Rodríguez-Moran and F. Guerrero-Romero, “Oral magnesium
supplementation improves the metabolic profile of metabolically obese, normalweight individuals: a randomized double-blind placebo-controlled trial,” Arch Med Res, vol. 45, no. 5, pp. 388–393, Jul. 2014, doi: 10.1016/j.arcmed.2014.05.003.
[132] N. Veronese et al., “Effect of magnesium supplementation on glucose
metabolism in people with or at risk of diabetes: a systematic review and metaanalysis of double-blind randomized controlled trials,” Eur J Clin Nutr, vol. 70, no. 12, pp. 1354–1359, Dec. 2016, doi: 10.1038/ejcn.2016.154.
[133] L. Setaro et al., “Magnesium status and the physical performance of
volleyball players: effects of magnesium supplementation,” J Sports Sci, vol. 32,
no. 5, pp. 438–445, 2014, doi: 10.1080/02640414.2013.828847.
[134] C. B. Edwards, “The effects of supplemented metabolites on lifespan and
stress response pathways in Caenorhabditis elegans,” Graduate Theses and Dissertations, 2015, . Available:
https://digitalcommons.usf.edu/etd/5681
[135] C. B. Edwards, N. Copes, A. G. Brito, J. Canfield, and P. C. Bradshaw,
“Malate and Fumarate Extend Lifespan in Caenorhabditis elegans,” PLOS ONE,
vol. 8, no. 3, p. e58345, Mar. 2013, doi: 10.1371/journal.pone.0058345.
[136] J. L. Wu, Q. P. Wu, J. M. Huang, R. Chen, M. Cai, and J. B. Tan, “Effects of Lmalate on physical stamina and activities of enzymes related to the malateaspartate
shuttle in liver of mice,” Physiol Res, vol. 56, no. 2, pp. 213–220, 2007,
doi: 10.33549/physiolres.930937.
[137] J.-L. Wu et al., “L-malate reverses oxidative stress and antioxidative
defenses in liver and heart of aged rats,” Physiol Res, vol. 57, no. 2, pp. 261–268,
2008, doi: 10.33549/physiolres.931161.
[138] J.-L. Wu, Q.-P. Wu, Y.-P. Peng, and J.-M. Zhang, “Effects of L-malate on
mitochondrial oxidoreductases in liver of aged rats,” Physiol Res, vol. 60, no. 2,
pp. 329–336, 2011, doi: 10.33549/physiolres.931986.
[139] E. PAPAKONSTANTINOU, M. ROTH, AND G. KARAKIULAKIS, “HYALURONIC
ACID: A KEY MOLECULE IN SKIN AGING,” DERMATOENDOCRINOL, VOL. 4, NO. 3,PP. 253–258, JUL. 2012, DOI: 10.4161/DERM.21923.
[140] L. BALOGH ET AL., “ABSORPTION, UPTAKE AND TISSUE AFFINITY OF HIGHMOLECULAR-WEIGHT HYALURONAN AFTER ORAL ADMINISTRATION IN RATS
AND DOGS,” J AGRIC FOOD CHEM, VOL. 56, NO. 22, PP. 10582–10593, NOV.
2008, DOI: 10.1021/JF8017029.
[141] I. GÖLLNER, W. VOSS, U. VON HEHN, AND S. KAMMERER, “INGESTION OF AN ORAL HYALURONAN SOLUTION IMPROVES SKIN HYDRATION, WRINKLE
REDUCTION, ELASTICITY, AND SKIN ROUGHNESS: RESULTS OF A CLINICAL
STUDY,” J EVID BASED COMPLEMENTARY ALTERN MED, VOL. 22, NO. 4, PP. 816–823, OCT. 2017, DOI: 10.1177/2156587217743640.
[142] N. HISADA ET AL., “LOW-MOLECULAR-WEIGHT HYALURONAN PERMEATES THROUGH HUMAN INTESTINAL CACO-2 CELL MONOLAYERS VIA THE PARACELLULAR PATHWAY,” BIOSCI BIOTECHNOL BIOCHEM, VOL. 72, NO. 4, PP.
1111–1114, APR. 2008, DOI: 10.1271/BBB.70748.
[143] M. OE ET AL., “ORAL HYALURONAN RELIEVES WRINKLES: A DOUBLEBLINDED, PLACEBO-CONTROLLED STUDY OVER A 12-WEEK PERIOD,” CLIN COSMET INVESTIG DERMATOL, VOL. 10, PP. 267–273, 2017, DOI:10.2147/CCID.S141845.
[144] C. KAWADA ET AL., “INGESTED HYALURONAN MOISTURIZES DRY SKIN,” NUTR J, VOL. 13, P. 70, JUL. 2014, DOI: 10.1186/1475-2891-13-70.
[145] S. M. JEGASOTHY, V. ZABOLOTNIAIA, AND S. BIELFELDT, “EFFICACY OF A NEW TOPICAL NANO-HYALURONIC ACID IN HUMANS,” J CLIN AESTHET DERMATOL, VOL. 7, NO. 3, PP. 27–29, MAR. 2014.
[146] M. S. DENZEL ET AL., “HEXOSAMINE PATHWAY METABOLITES ENHANCE PROTEIN QUALITY CONTROL AND PROLONG LIFE,” CELL, VOL. 156, NO. 6, PP. 1167–1178, MAR. 2014, DOI: 10.1016/J.CELL.2014.01.061.
[147] K. UNNO ET AL., “THEANINE INTAKE IMPROVES THE SHORTENED
LIFESPAN, COGNITIVE DYSFUNCTION AND BEHAVIOURAL DEPRESSION THAT
ARE INDUCED BY CHRONIC PSYCHOSOCIAL STRESS IN MICE,” FREE RADICAL RESEARCH, VOL. 45, NO. 8, PP. 966–974, AUG. 2011, DOI:
10.3109/10715762.2011.566869.
[148] K. ZARSE, S. JABIN, AND M. RISTOW, “L-THEANINE EXTENDS LIFESPAN OF ADULT CAENORHABDITIS ELEGANS,” EUR J NUTR, VOL. 51, NO. 6, PP. 765–768, 2012, DOI: 10.1007/S00394-012-0341-5.
[149] L. ZENG ET AL., “L-THEANINE ATTENUATES LIVER AGING BY INHIBITING ADVANCED GLYCATION END PRODUCTS IN D-GALACTOSE-INDUCED RATS AND REVERSING AN IMBALANCE OF OXIDATIVE STRESS AND INFLAMMATION,” EXPERIMENTAL GERONTOLOGY, VOL. 131, P. 110823, MAR. 2020, DOI:10.1016/J.EXGER.2019.110823.
[150] A. CULETU, B. FERNANDEZ-GOMEZ, M. ULLATE, M. D. DEL CASTILLO, AND W. ANDLAUER, “EFFECT OF THEANINE AND POLYPHENOLS ENRICHED
FRACTIONS FROM DECAFFEINATED TEA DUST ON THE FORMATION OF
MAILLARD REACTION PRODUCTS AND SENSORY ATTRIBUTES OF BREADS,”
FOOD CHEMISTRY, VOL. 197, PP. 14–23, APR. 2016, DOI:
10.1016/J.FOODCHEM.2015.10.097.
[151] N. EGASHIRA, K. HAYAKAWA, K. MISHIMA, H. KIMURA, K. IWASAKI, AND M. FUJIWARA, “NEUROPROTECTIVE EFFECT OF GAMMA-GLUTAMYLETHYLAMIDE
(THEANINE) ON CEREBRAL INFARCTION IN MICE,” NEUROSCI LETT, VOL. 363, NO. 1, PP. 58–61, JUN. 2004, DOI: 10.1016/J.NEULET.2004.03.046.
[152] S. JAMWAL, S. SINGH, J. S. GILL, AND P. KUMAR, “L-THEANINE PREVENT
QUINOLINIC ACID INDUCED MOTOR DEFICIT AND STRIATAL NEUROTOXICITY:
REDUCTION IN OXIDO-NITROSATIVE STRESS AND RESTORATION OF STRIATAL NEUROTRANSMITTERS LEVEL,” EUR J PHARMACOL, VOL. 811, PP. 171–179, SEP. 2017, DOI: 10.1016/J.EJPHAR.2017.06.016.
[153] M. TAKESHIMA, I. MIYAZAKI, S. MURAKAMI, T. KITA, AND M. ASANUMA, “LTHEANINE PROTECTS AGAINST EXCESS DOPAMINE-INDUCED NEUROTOXICITY IN THE PRESENCE OF ASTROCYTES,” J CLIN BIOCHEM NUTR, VOL. 59, NO. 2, PP. 93–99, SEP. 2016, DOI: 10.3164/JCBN.16-15.
[154] S. THANGARAJAN, A. DEIVASIGAMANI, S. S. NATARAJAN, P. KRISHNAN, AND S. K. MOHANAN, “NEUROPROTECTIVE ACTIVITY OF L-THEANINE ON 3-NITROPROPIONIC ACID-INDUCED NEUROTOXICITY IN RAT STRIATUM,” INTERNATIONAL JOURNAL OF NEUROSCIENCE, VOL. 124, NO. 9, PP. 673–684, SEP. 2014, DOI: 10.3109/00207454.2013.872642.
[155] endothelial cells through eNOS phosphorylation,” J Nutr Biochem, vol. 24, no. 3, pp. 595–605, Mar. 2013, doi: 10.1016/j.jnutbio.2012.02.016.
[156] H. Yokogoshi, Y. Kato, Y. M. Sagesaka, T. Takihara-Matsuura, T. Kakuda, and N. Takeuchi, “Reduction effect of theanine on blood pressure and brain 5-
hydroxyindoles in spontaneously hypertensive rats,” Biosci Biotechnol Biochem, vol. 59, no. 4, pp. 615–618, Apr. 1995, doi: 10.1271/bbb.59.615.
[157] A. Yoto, M. Motoki, S. Murao, and H. Yokogoshi, “Effects of L-theanine or
caffeine intake on changes in blood pressure under physical and psychological
stresses,” J Physiol Anthropol, vol. 31, p. 28, Oct. 2012, doi: 10.1186/1880-6805-
31-28.
[158] J. M. Everett et al., “Theanine consumption, stress and anxiety in human
clinical trials: A systematic review,” Journal of Nutrition & Intermediary Metabolism, vol. 4, pp. 41–42, Jun. 2016, doi: 10.1016/j.jnim.2015.12.308.
[159] K. Kimura, M. Ozeki, L. R. Juneja, and H. Ohira, “L-Theanine reduces
psychological and physiological stress responses,” Biol Psychol, vol. 74, no. 1,
pp. 39–45, Jan. 2007, doi: 10.1016/j.biopsycho.2006.06.006.
[160] K. Unno et al., “Anti-stress effect of theanine on students during pharmacy
practice: positive correlation among salivary α-amylase activity, trait anxiety and
subjective stress,” Pharmacol Biochem Behav, vol. 111, pp. 128–135, Oct. 2013,
doi: 10.1016/j.pbb.2013.09.004.
[161] Kunos, G., 2007. Understanding metabolic homeostasis and imbalance:
what is the role of the endocannabinoid system?. The American journal of
medicine, 120(9), pp.S18-S24.
[162] Caterina, Michael J. "TRP channel cannabinoid receptors in skin sensation, homeostasis, and inflammation." ACS chemical neuroscience 5.11(2014): 1107-1116.
[163] Grundy, R.I., 2002. The therapeutic potential of the cannabinoids in
neuroprotection. Expert opinion on investigational drugs, 11(10), p.1365-1374.
[164] Henshaw, F.R., Dewsbury, L.S., Lim, C.K. and Steiner, G.Z., 2021. The
effects of cannabinoids on pro-and anti-inflammatory cytokines: a systematic
review of in vivo studies. Cannabis and Cannabinoid Research, 6(3), pp.177-195.
[165] Chu, F.X., Wang, X., Li, B., Xu, L.L. and Di, B., 2024. The NLRP3
inflammasome: A vital player in inflammation and mediating the anti-inflammatory effect of CBD. Inflammation Research, 73(2), pp.227-242.
[166] Jastrząb, A., Jarocka-Karpowicz, I. and Skrzydlewska, E., 2022. The origin
and biomedical relevance of cannabigerol. International journal of molecular sciences, 23(14), p.7929.
[167] Li, S., Li, W., Malhi, N.K., Huang, J., Li, Q., Zhou, Z., Wang, R., Peng, J.,
Yin, T. and Wang, H., 2024. Cannabigerol (CBG): A Comprehensive Review of Its Molecular Mechanisms and Therapeutic Potential. Molecules, 29(22), p.5471.
[168] X. Deng et al., “Promotion of Mitochondrial Biogenesis via Activation of
AMPK-PGC1ɑ Signaling Pathway by Ginger (Zingiber officinale Roscoe) Extract,
and Its Major Active Component 6-Gingerol,” J Food Sci, vol. 84, no. 8, pp. 2101–2111, Aug. 2019, doi:10.1111/1750-3841.14723.
[169] M. Makhdoomi Arzati et al., “The Effects of Ginger on Fasting Blood Sugar,
Hemoglobin A1c, and Lipid Profiles in Patients with Type 2 Diabetes,” Int J
Endocrinol Metab, vol. 15, no. 4, p. e57927, Oct. 2017, doi: 10.5812/ijem.57927.
[170] H. Mozaffari-Khosravi, B. Talaei, B.-A. Jalali, A. Najarzadeh, and M. R.Mozayan, “The effect of ginger powder supplementation on insulin resistance
and glycemic indices in patients with type 2 diabetes: a randomized, doubleblind,
placebo-controlled trial,” Complement Ther Med, vol. 22, no. 1, pp. 9–16,Feb. 2014, doi: 10.1016/j.ctim.2013.12.017.
[171] E. Oh et al., “Ginger extract increases muscle mitochondrial biogenesis and
serum HDL-cholesterol level in high-fat diet-fed rats,” Journal of Functional
Foods, vol. 29, pp. 193–200, Feb. 2017, doi: 10.1016/j.jff.2016.12.023.
[172] N. S. Mashhadi, R. Ghiasvand, G. Askari, M. Hariri, L. Darvishi, and M. R.
Mofid, “Anti-Oxidative and Anti-Inflammatory Effects of Ginger in Health and Physical Activity: Review of Current Evidence,” Int J Prev Med, vol. 4, no. Suppl 1,pp. S36–S42, Apr. 2013.
[173] A. Gomar, A. Hosseini, and N. Mirazi, “Memory enhancement by administration of ginger (Zingiber officinale) extract on morphine-induced memory impairment in male rats,” Journal of Acute Disease, vol. 3, no. 3, pp.212–217, Jan. 2014, doi: 10.1016/S2221-6189(14)60047-0.
[174] S. Khaliq et al., “Enhancement in spatial and recognition memory functions
following long term oral administration of ginger extract in rats,” Pak J Pharm Sci, vol. 30, no. 6, pp. 2061–2066, Nov. 2017.
[175] N. Saenghong et al., “Zingiber officinale Improves Cognitive Function of the Middle-Aged Healthy Women,” Evid Based Complement Alternat Med, vol. 2012
[177] Y. ZHOU, L. XUE, L. GAO, X. QIN, AND G. DU, “GINGER EXTRACT EXTENDS THE LIFESPAN OF DROSOPHILA MELANOGASTER THROUGH ANTIOXIDATION
AND AMELIORATING METABOLIC DYSFUNCTION,” JOURNAL OF FUNCTIONAL FOODS, VOL. 49, PP. 295–305, OCT. 2018, DOI: 10.1016/J.JFF.2018.08.040.
[178] E. B. LEE ET AL., “LONGEVITY AND STRESS RESISTANT PROPERTY OF 6-
GINGEROL FROM ZINGIBER OFFICINALE ROSCOE IN CAENORHABDITIS
ELEGANS,” BIOMOL THER (SEOUL), VOL. 26, NO. 6, PP. 568–575, NOV. 2018, DOI:10.4062/BIOMOLTHER.2017.215.
[179] R. S. AHMED, V. SETH, S. T. PASHA, AND B. D. BANERJEE, “INFLUENCE OF DIETARY GINGER (ZINGIBER OFFICINALES ROSC) ON OXIDATIVE STRESS INDUCED BY MALATHION IN RATS,” FOOD CHEM TOXICOL, VOL. 38, NO. 5, PP.443–450, MAY 2000, DOI: 10.1016/S0278-6915(00)00019-3.
[180] M. JALALI ET AL., “THE EFFECTS OF GINGER SUPPLEMENTATION ON
MARKERS OF INFLAMMATORY AND OXIDATIVE STRESS: A SYSTEMATIC REVIEW AND META-ANALYSIS OF CLINICAL TRIALS,” PHYTOTHERAPY RESEARCH, VOL.34, NO. 8, PP. 1723–1733, 2020, DOI: 10.1002/PTR.6638.
[181] M. IGARASHI ET AL., “NAD+ SUPPLEMENTATION REJUVENATES AGED GUT ADULT STEM CELLS,” AGING CELL, VOL. 18, NO. 3, P. E12935, 2019, DOI:10.1111/ACEL.12935.
[182] J. SONG ET AL., “NICOTINAMIDE MONONUCLEOTIDE PROMOTES
OSTEOGENESIS AND REDUCES ADIPOGENESIS BY REGULATING MESENCHYMAL STROMAL CELLS VIA THE SIRT1 PATHWAY IN AGED BONE MARROW,” CELL DEATH DIS, VOL. 10, NO. 5, PP. 1–12, APR. 2019, DOI: 10.1038/S41419-019-1569-2.
[183] C. WILEY AND J. CAMPISI, “NAD+ CONTROLS NEURAL STEM CELL FATE IN THE AGING BRAIN,” THE EMBO JOURNAL, VOL. 33, NO. 12, PP. 1289–1291, JUN. 2014, DOI: 10.15252/EMBJ.201488969.
[184] A. DAS ET AL., “IMPAIRMENT OF AN ENDOTHELIAL NAD+-H2S SIGNALING NETWORK IS A REVERSIBLE CAUSE OF VASCULAR AGING,” CELL, VOL. 173, NO.
1, PP. 74-89.E20, MAR. 2018, DOI: 10.1016/J.CELL.2018.02.008.
[185] N. E. DE PICCIOTTO ET AL., “NICOTINAMIDE MONONUCLEOTIDE
SUPPLEMENTATION REVERSES VASCULAR DYSFUNCTION AND OXIDATIVE STRESS WITH AGING IN MICE,” AGING CELL, VOL. 15, NO. 3, PP. 522–530, JUN.2016, DOI: 10.1111/ACEL.12461.
[186] T. KISS ET AL., “NICOTINAMIDE MONONUCLEOTIDE (NMN)
SUPPLEMENTATION PROMOTES ANTI-AGING MIRNA EXPRESSION PROFILE IN THE AORTA OF AGED MICE, PREDICTING EPIGENETIC REJUVENATION AND ANTI-ATHEROGENIC EFFECTS,” GEROSCIENCE, VOL. 41, NO. 4, PP. 419–439,AUG. 2019, DOI: 10.1007/S11357-019-00095-X.
[187] T. KISS ET AL., “NICOTINAMIDE MONONUCLEOTIDE (NMN)
SUPPLEMENTATION PROMOTES NEUROVASCULAR REJUVENATION IN AGED MICE: TRANSCRIPTIONAL FOOTPRINT OF SIRT1 ACTIVATION, MITOCHONDRIAL PROTECTION, ANTI-INFLAMMATORY, AND ANTI-APOPTOTIC EFFECTS,” GEROSCIENCE, VOL. 42, NO. 2, PP. 527–546, APR. 2020, DOI: 10.1007/S11357-020-00165-5.
[188] S. TARANTINI ET AL., “NICOTINAMIDE MONONUCLEOTIDE (NMN) SUPPLEMENTATION RESCUES CEREBROMICROVASCULAR ENDOTHELIAL FUNCTION AND NEUROVASCULAR COUPLING RESPONSES AND IMPROVES
COGNITIVE FUNCTION IN AGED MICE,” REDOX BIOLOGY, VOL. 24, P. 101192,
JUN. 2019, DOI: 10.1016/J.REDOX.2019.101192.
[189] M. YOSHINO ET AL., “NICOTINAMIDE MONONUCLEOTIDE INCREASES MUSCLE INSULIN SENSITIVITY IN PREDIABETIC WOMEN,” SCIENCE, VOL. 372, NO. 6547, PP. 1224–1229, JUN. 2021, DOI: 10.1126/SCIENCE.ABE9985.
[190] M. IGARASHI ET AL., “CHRONIC NICOTINAMIDE MONONUCLEOTIDE
SUPPLEMENTATION ELEVATES BLOOD NICOTINAMIDE ADENINE DINUCLEOTIDE LEVELS AND ALTERS MUSCLE MOTILITY IN HEALTHY OLD MEN,” RESEARCH SQUARE, PREPRINT, JUN. 2021. DOI: 10.21203/RS.3.RS-455083/V1.
[191] B. LIAO, Y. ZHAO, D. WANG, X. ZHANG, X. HAO, AND M. HU, “NICOTINAMIDE MONONUCLEOTIDE SUPPLEMENTATION ENHANCES AEROBIC CAPACITY IN AMATEUR RUNNERS: A RANDOMIZED, DOUBLE-BLIND STUDY,” JOURNAL OF THE
INTERNATIONAL SOCIETY OF SPORTS NUTRITION, VOL. 18, NO. 1, P. 54, JUL.
2021, DOI: 10.1186/S12970-021-00442-4.
[192] J. L. AVALOS, K. M. BEVER, AND C. WOLBERGER, “MECHANISM OF SIRTUIN INHIBITION BY NICOTINAMIDE: ALTERING THE NAD+ COSUBSTRATE
SPECIFICITY OF A SIR2 ENZYME,” MOLECULAR CELL, VOL. 17, NO. 6, PP. 855–868, MAR. 2005, DOI: 10.1016/J.MOLCEL.2005.02.022.
[193] Kim, J.S., Yean, M.H., Lee, S.Y. and Kang, S.S., 2008. Phytochemical studies on Astragalus root (1)-Saponins. Natural Product Sciences, 14(1),pp.1-10.
[194] Ip, F. C., Ng, Y. P., An, H. J., Dai, Y., Pang, H. H., Ip, N. Y. (2014).
Cycloastragenol is a potent telomerase activator in neuronal cells:Neurosignals, 22(1), 52-63.
[195] Hong, Haofeng, et al. "Cycloastragenol and Astragaloside IV activate telomerase and protect nucleus pulposus cells against high glucoseinduced
senescence and apoptosis." Experimental and therapeutic medicine 22.5 (2021): 1326.
[196] Aubert, Geraldine, and Peter M. Lansdorp. "Telomeres and aging."
Physiological reviews (2008).
[197] Enukashvily, N.I., Skazina, M.A., Chubar, A.V. and Mashutin, A.B.,
2020. The effect of the geroprotectors astragaloside iv, cycloastragenol,
and Timovial–Epivial peptide complex on telomere length and telomerase activity in human mesenchymal stromal cells and senescent fibroblasts. Cell and Tissue Biology, 14, pp.83-90.
[198] Yilmaz, S., Bedir, E. and Ballar Kirmizibayrak, P., 2024. Multi-Targeted Effects of Novel Cycloastragenol Derivatives: Enhancing NRF2,Proteostasis, and Telomerase Pathways with p53 Modulation to Delay Replicative Senescence. bioRxiv, pp.2024-08.
[199] Acosta, E., 2009. Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Current opinion in colloid & interface science, 14(1), pp
We use cookies to analyze website traffic and optimize your website experience. By accepting our use of cookies, your data will be aggregated with all other user data.